Permanent versus determinant: not via saturations

Christian Ikenmeyer
Texas A&M University

joint work with Peter Bürgisser
Technische Universität Berlin

and Jesko Hüttenhain
Technische Universität Berlin

SIAM Conference on Applied Algebraic Geometry 2015
Determinant Orbit Closure

- The determinant polynomial:

\[\det_n := \sum_{\pi \in S_n} \text{sgn}(\pi) X_{1,\pi(1)} \cdots X_{n,\pi(n)} \in \text{Sym}^n \mathbb{C}^{n^2}, \]

where \(\text{Sym}^n \mathbb{C}^{n^2} \) is the space of homogeneous degree \(n \) forms in \(n^2 \) variables.

- We call \(\text{Sym}^n \mathbb{C}^{n^2} \) the ambient space.

- The group \(\text{GL}_{n^2} \) canonically acts on \(\text{Sym}^n \mathbb{C}^{n^2} \).

- Define the orbit closure

\[\text{Det}_n := \overline{\text{GL}_{n^2} \det_n} := \{ g\det_n \mid g \in \text{GL}_{n^2} \}. \]

- In geometric complexity theory we search for functions in the vanishing ideal \(I(\text{Det}_n) \).

- These functions can be used to prove complexity lower bounds on polynomials like the permanent polynomial.
Determinant Orbit Closure

- The determinant polynomial:

$$\det_n := \sum_{\pi \in S_n} \text{sgn}(\pi) X_{1,\pi(1)} \cdots X_{n,\pi(n)} \in \text{Sym}^n \mathbb{C}^{n^2},$$

where $\text{Sym}^n \mathbb{C}^{n^2}$ is the space of homogeneous degree n forms in n^2 variables.

- We call $\text{Sym}^n \mathbb{C}^{n^2}$ the ambient space.

- The group GL_{n^2} canonically acts on $\text{Sym}^n \mathbb{C}^{n^2}$.

- Define the orbit closure

$$\overline{\det_n} := \overline{g \det_n} := \{ g \det_n \mid g \in \text{GL}_{n^2} \}.$$

- In geometric complexity theory we search for functions in the vanishing ideal $I(\text{Det}_n)$.

- These functions can be used to prove complexity lower bounds on polynomials like the permanent polynomial.
Determinant Orbit Closure

- The determinant polynomial:
 \[\det_n := \sum_{\pi \in S_n} \text{sgn}(\pi)X_{1,\pi(1)} \cdots X_{n,\pi(n)} \in \text{Sym}^n \mathbb{C}^{n^2}, \]
 where \(\text{Sym}^n \mathbb{C}^{n^2} \) is the space of homogeneous degree \(n \) forms in \(n^2 \) variables.

- We call \(\text{Sym}^n \mathbb{C}^{n^2} \) the **ambient space**.

- The group \(\text{GL}_{n^2} \) canonically acts on \(\text{Sym}^n \mathbb{C}^{n^2} \).

- Define the orbit closure
 \[\text{Det}_n := \overline{\text{GL}_{n^2}\det_n} := \{g\det_n \mid g \in \text{GL}_{n^2}\}. \]

- In geometric complexity theory we search for functions in the vanishing ideal \(I(\text{Det}_n) \).
- These functions can be used to prove complexity lower bounds on polynomials like the permanent polynomial.
Determinant Orbit Closure

- The determinant polynomial:
 \[\det_n := \sum_{\pi \in S_n} \text{sgn}(\pi) X_{\pi(1)} \cdots X_{\pi(n)} \in \text{Sym}^n \mathbb{C}^{n^2}, \]

 where \(\text{Sym}^n \mathbb{C}^{n^2} \) is the space of homogeneous degree \(n \) forms in \(n^2 \) variables.

- We call \(\text{Sym}^n \mathbb{C}^{n^2} \) the ambient space.

- The group \(\text{GL}_{n^2} \) canonically acts on \(\text{Sym}^n \mathbb{C}^{n^2} \).

- Define the orbit closure
 \[\text{Det}_n := \overline{\text{GL}_{n^2} \det_n} := \overline{\{g \det_n \mid g \in \text{GL}_{n^2}\}}. \]

- In geometric complexity theory we search for functions in the vanishing ideal \(I(\text{Det}_n) \).
- These functions can be used to prove complexity lower bounds on polynomials like the permanent polynomial.
Determinant Orbit Closure

The determinant polynomial:

\[\det_n := \sum_{\pi \in S_n} \text{sgn}(\pi) X_{1,\pi(1)} \cdots X_{n,\pi(n)} \in \text{Sym}^n \mathbb{C}^{n^2}, \]

where \(\text{Sym}^n \mathbb{C}^{n^2} \) is the space of homogeneous degree \(n \) forms in \(n^2 \) variables.

We call \(\text{Sym}^n \mathbb{C}^{n^2} \) the \textbf{ambient space}.

The group \(\text{GL}_{n^2} \) canonically acts on \(\text{Sym}^n \mathbb{C}^{n^2} \).

Define the orbit closure

\[\text{Det}_n := \overline{\text{GL}_{n^2} \det_n} := \{ g \det_n \mid g \in \text{GL}_{n^2} \}. \]

In geometric complexity theory we search for functions in the vanishing ideal \(I(\text{Det}_n) \).

These functions can be used to prove complexity lower bounds on polynomials like the permanent polynomial.
Determinant Orbit Closure

- The determinant polynomial:
 \[\det_n := \sum_{\pi \in S_n} \text{sgn}(\pi) X_{1,\pi(1)} \cdots X_{n,\pi(n)} \in \text{Sym}^n \mathbb{C}^{n^2}, \]

 where \(\text{Sym}^n \mathbb{C}^{n^2} \) is the space of homogeneous degree \(n \) forms in \(n^2 \) variables.

- We call \(\text{Sym}^n \mathbb{C}^{n^2} \) the **ambient space**.

- The group \(\text{GL}_{n^2} \) canonically acts on \(\text{Sym}^n \mathbb{C}^{n^2} \).

- Define the orbit closure
 \[\text{Det}_n := \overline{\text{GL}_{n^2} \det_n} := \{ g\det_n \mid g \in \text{GL}_{n^2} \}. \]

- In geometric complexity theory we search for functions in the vanishing ideal \(I(\text{Det}_n) \).

- These functions can be used to prove complexity lower bounds on polynomials like the permanent polynomial.
Determinant Orbit Closure

- The determinant polynomial:

\[\det_n := \sum_{\pi \in S_n} \text{sgn}(\pi) X_{1,\pi(1)} \cdots X_{n,\pi(n)} \in \text{Sym}^n \mathbb{C}^{n^2}, \]

where \(\text{Sym}^n \mathbb{C}^{n^2} \) is the space of homogeneous degree \(n \) forms in \(n^2 \) variables.

- We call \(\text{Sym}^n \mathbb{C}^{n^2} \) the ambient space.

- The group \(\text{GL}_{n^2} \) canonically acts on \(\text{Sym}^n \mathbb{C}^{n^2} \).

- Define the orbit closure

\[\text{Det}_n := \overline{\text{GL}_{n^2} \det_n} := \{ g \det_n \mid g \in \text{GL}_{n^2} \}. \]

- In geometric complexity theory we search for functions in the vanishing ideal \(I(\text{Det}_n) \).

- These functions can be used to prove complexity lower bounds on polynomials like the permanent polynomial.
Plethysms

- In each degree d the coordinate ring of the ambient space splits:

\[\mathcal{O}(\text{Sym}^n \mathbb{C}^{n^2})_d = \mathcal{O}(\text{Det}_n)_d \oplus I(\text{Det}_n)_d. \]

- The group GL_{n^2} acts linearly on $\mathcal{O}(\text{Sym}^n \mathbb{C}^{n^2})_d$, on $\mathcal{O}(\text{Det}_n)_d$, and on $I(\text{Det}_n)_d$:

 Define $g \cdot f$ via $(g \cdot f)(x) := f(g^{-1}x)$.

- Therefore $\mathcal{O}(\text{Sym}^n \mathbb{C}^{n^2})_d$, $\mathcal{O}(\text{Det}_n)_d$, and $I(\text{Det}_n)_d$ are finite dimensional GL_{n^2}-representations.

- The irreducible representations of GL_{n^2} that can occur in $\mathcal{O}(\text{Sym}^n \mathbb{C}^{n^2})_d$ are indexed by partitions with dn boxes. For example, $(13, 13, 2, 2, 2, 2, 2)$ occurs in $\mathcal{O}(\text{Sym}^3 \mathbb{C}^9)_{12}$.

- To find a function in $I(\text{Det}_n)$ it is sufficient to find an irreducible representation that occurs in $\mathcal{O}(\text{Sym}^n \mathbb{C}^{n^2})$ but not in $\mathcal{O}(\text{Det}_n)$. This is Mulmuley & Sohoni’s approach using occurrence obstructions.

\[S(\text{Det}_n) := \{ \text{partition } \lambda \mid \text{type } \lambda \text{ occurs in } \mathcal{O}(\text{Det}_n) \}, \]
\[S(\text{Sym}^n \mathbb{C}^{n^2}) := \{ \text{partition } \lambda \mid \text{type } \lambda \text{ occurs in } \mathcal{O}(\text{Sym}^n \mathbb{C}^{n^2}) \}. \]
Plethysms

- In each degree d the coordinate ring of the ambient space splits:

$$O(\text{Sym}^n \mathbb{C}^n^2)_d = O(\text{Det}_n)_d \oplus I(\text{Det}_n)_d.$$

- The group GL_{n^2} acts linearly on $O(\text{Sym}^n \mathbb{C}^n^2)_d$, on $O(\text{Det}_n)_d$, and on $I(\text{Det}_n)_d$:

 Define $g \cdot f$ via $(g \cdot f)(x) := f(g^{-1}x)$.

Therefore $O(\text{Sym}^n \mathbb{C}^n^2)_d$, $O(\text{Det}_n)_d$, and $I(\text{Det}_n)_d$ are finite dimensional GL_{n^2}-representations.

- The irreducible representations of GL_{n^2} that can occur in $O(\text{Sym}^n \mathbb{C}^n^2)_d$ are indexed by partitions with dn boxes. For example, $(13, 13, 2, 2, 2, 2, 2)$ occurs in $O(\text{Sym}^3 \mathbb{C}^9)_12$.

- To find a function in $I(\text{Det}_n)$ it is sufficient to find an irreducible representation that occurs in $O(\text{Sym}^n \mathbb{C}^n^2)$ but not in $O(\text{Det}_n)$. This is Mulmuley & Sohoni’s approach using occurrence obstructions.

$$S(\text{Det}_n) := \{\text{partition } \lambda \mid \text{type } \lambda \text{ occurs in } O(\text{Det}_n)\},$$

$$S(\text{Sym}^n \mathbb{C}^n^2) := \{\text{partition } \lambda \mid \text{type } \lambda \text{ occurs in } O(\text{Sym}^n \mathbb{C}^n^2)\}.$$
Plethysms

- In each degree d the coordinate ring of the ambient space splits:

$$\mathcal{O}(\text{Sym}^n \mathbb{C}^n) = \mathcal{O}(\text{Det}_n) \oplus I(\text{Det}_n).$$

- The group GL_{n^2} acts linearly on $\mathcal{O}(\text{Sym}^n \mathbb{C}^n)$, on $\mathcal{O}(\text{Det}_n)$, and on $I(\text{Det}_n)$:

 Define $g \cdot f$ via $(g \cdot f)(x) := f(g^{-1}x)$.

- Therefore $\mathcal{O}(\text{Sym}^n \mathbb{C}^n)$, $\mathcal{O}(\text{Det}_n)$, and $I(\text{Det}_n)$ are finite dimensional GL_{n^2}-representations.

 - The irreducible representations of GL_{n^2} that can occur in $\mathcal{O}(\text{Sym}^n \mathbb{C}^n)$ are indexed by partitions with dn boxes. For example, $(13, 13, 2, 2, 2, 2, 2)$ occurs in $\mathcal{O}(\text{Sym}^3 \mathbb{C}^9)_{12}$.

 - To find a function in $I(\text{Det}_n)$ it is sufficient to find an irreducible representation that occurs in $\mathcal{O}(\text{Sym}^n \mathbb{C}^n)$ but not in $\mathcal{O}(\text{Det}_n)$. This is Mulmuley & Sohoni’s approach using occurrence obstructions.

 - $\mathcal{S}$$\mathcal{S}(\text{Det}_n) := \{\text{partition } \lambda \mid \text{type } \lambda \text{ occurs in } \mathcal{O}(\text{Det}_n)\}$,

 $\mathcal{S}(\text{Sym}^n \mathbb{C}^n) := \{\text{partition } \lambda \mid \text{type } \lambda \text{ occurs in } \mathcal{O}(\text{Sym}^n \mathbb{C}^n)\}$.

Christian Ikenmeyer

Permanent versus determinant: not via saturations 3
Plethysms

- In each degree d the coordinate ring of the ambient space splits:
 \[
 \mathcal{O}(\text{Sym}^n \mathbb{C}^2)_d = \mathcal{O}(\text{Det}_n)_d \oplus I(\text{Det}_n)_d.
 \]

- The group GL_{n^2} acts linearly on $\mathcal{O}(\text{Sym}^n \mathbb{C}^2)_d$, on $\mathcal{O}(\text{Det}_n)_d$, and on $I(\text{Det}_n)_d$:
 Define $g \cdot f$ via $(g \cdot f)(x) := f(g^{-1}x)$.

- Therefore $\mathcal{O}(\text{Sym}^n \mathbb{C}^2)_d$, $\mathcal{O}(\text{Det}_n)_d$, and $I(\text{Det}_n)_d$ are finite dimensional GL_{n^2}-representations.

- The irreducible representations of GL_{n^2} that can occur in $\mathcal{O}(\text{Sym}^n \mathbb{C}^2)_d$ are indexed by partitions with dn boxes. For example, $(13, 13, 2, 2, 2, 2, 2)$ occurs in $\mathcal{O}(\text{Sym}^3 \mathbb{C}^9)_{12}$.

- To find a function in $I(\text{Det}_n)$ it is sufficient to find an irreducible representation that occurs in $\mathcal{O}(\text{Sym}^n \mathbb{C}^2)$ but not in $\mathcal{O}(\text{Det}_n)$. This is Mulmuley & Sohoni’s approach using occurrence obstructions.

 \[
 S(\text{Det}_n) := \{\text{partition } \lambda \mid \text{type } \lambda \text{ occurs in } \mathcal{O}(\text{Det}_n)\},
 \]
 \[
 S(\text{Sym}^n \mathbb{C}^2) := \{\text{partition } \lambda \mid \text{type } \lambda \text{ occurs in } \mathcal{O}(\text{Sym}^n \mathbb{C}^2)\}.
 \]
Plethysms

In each degree d the coordinate ring of the ambient space splits:

$$\mathcal{O}(\text{Sym}^n \mathbb{C}^n)_d = \mathcal{O}(\text{Det}_n)_d \oplus I(\text{Det}_n)_d.$$

The group GL_{n^2} acts linearly on $\mathcal{O}(\text{Sym}^n \mathbb{C}^n)_d$, on $\mathcal{O}(\text{Det}_n)_d$, and on $I(\text{Det}_n)_d$:

Define $g \cdot f$ via $(g \cdot f)(x) := f(g^{-1}x)$.

Therefore $\mathcal{O}(\text{Sym}^n \mathbb{C}^n)_d$, $\mathcal{O}(\text{Det}_n)_d$, and $I(\text{Det}_n)_d$ are finite dimensional GL_{n^2}-representations.

The irreducible representations of GL_{n^2} that can occur in $\mathcal{O}(\text{Sym}^n \mathbb{C}^n)_d$ are indexed by partitions with dn boxes. For example, $(13, 13, 2, 2, 2, 2, 2)$ occurs in $\mathcal{O}(\text{Sym}^3 \mathbb{C}^9)_{12}$.

To find a function in $I(\text{Det}_n)$ it is sufficient to find an irreducible representation that occurs in $\mathcal{O}(\text{Sym}^n \mathbb{C}^n)$ but not in $\mathcal{O}(\text{Det}_n)$. This is Mulmuley & Sohoni’s approach using occurrence obstructions.

$$S(\text{Det}_n) := \{\text{partition } \lambda \mid \text{type } \lambda \text{ occurs in } \mathcal{O}(\text{Det}_n)\},$$

$$S(\text{Sym}^n \mathbb{C}^n) := \{\text{partition } \lambda \mid \text{type } \lambda \text{ occurs in } \mathcal{O}(\text{Sym}^n \mathbb{C}^n)\}.$$
Plethysms

- In each degree d the coordinate ring of the ambient space splits:
 \[\mathcal{O}(\text{Sym}^n\mathbb{C}^2)_d = \mathcal{O}(\text{Det}_n)_d \oplus I(\text{Det}_n)_d. \]

- The group GL_{n^2} acts linearly on $\mathcal{O}(\text{Sym}^n\mathbb{C}^2)_d$, on $\mathcal{O}(\text{Det}_n)_d$, and on $I(\text{Det}_n)_d$:
 Define $g \cdot f$ via $(g \cdot f)(x) := f(g^{-1}x)$.

Therefore $\mathcal{O}(\text{Sym}^n\mathbb{C}^2)_d$, $\mathcal{O}(\text{Det}_n)_d$, and $I(\text{Det}_n)_d$ are finite dimensional GL_{n^2}-representations.

- The irreducible representations of GL_{n^2} that can occur in $\mathcal{O}(\text{Sym}^n\mathbb{C}^2)_d$ are indexed by partitions with dn boxes. For example, $(13, 13, 2, 2, 2, 2, 2)$ occurs in $\mathcal{O}(\text{Sym}^3\mathbb{C}^9)_{12}$.

- To find a function in $I(\text{Det}_n)$ it is sufficient to find an irreducible representation that occurs in $\mathcal{O}(\text{Sym}^n\mathbb{C}^2)$ but not in $\mathcal{O}(\text{Det}_n)$. This is Mulmuley & Sohoni’s approach using occurrence obstructions.

\[S(\text{Det}_n) := \{ \text{partition } \lambda \mid \text{type } \lambda \text{ occurs in } \mathcal{O}(\text{Det}_n) \}, \]
\[S(\text{Sym}^n\mathbb{C}^2) := \{ \text{partition } \lambda \mid \text{type } \lambda \text{ occurs in } \mathcal{O}(\text{Sym}^n\mathbb{C}^2) \}. \]
\[S(\text{Det}_n) := \{ \text{partition } \lambda \mid \text{type } \lambda \text{ occurs in } O(\text{Det}_n) \} \]
\[\subseteq S(\text{Sym}^n \mathbb{C}^n^2) := \{ \text{partition } \lambda \mid \text{type } \lambda \text{ occurs in } O(\text{Sym}^n \mathbb{C}^n^2) \}. \]

We search for \(\lambda \) in \(S(\text{Sym}^n \mathbb{C}^n^2) \setminus S(\text{Det}_n) \).

- Both sets are finitely generated \textbf{monoids}.
- For a monoid \(S \) let \(A := S - S \) the group generated by \(S \).
 - \(S \) is called \textbf{saturated} if
 \[
 \forall x \in A \forall k \in \mathbb{N}_{>0} : \text{ } kx \in S \Rightarrow x \in S.
 \]
- The \textbf{saturation} \(\text{Sat}(S) \) of a monoid \(S \) is the smallest saturated monoid that contains \(S \).
- The difference \(\text{Sat}(S) \setminus S \) is called the set of \textbf{holes} of \(S \).
- Let \(S(\text{Det}_n)_{\leq n} \) denote the submonoid where we take only partitions with at most \(n \) rows. This is a natural restriction in geometric complexity theory.

\[\text{Our main contribution} \]

\[\text{Sat}(S(\text{Det}_n)_{\leq n}) = \{ \lambda \mid \text{the number of boxes of } \lambda \text{ is divisible by } n \}. \]

- Conclusion: The approach with the saturation \(\text{Sat}(S(\text{Det}_n)) \) is too coarse.
 - We have to look at the holes of \(S(\text{Det}_n) \).
\[S(\text{Det}_n) := \{ \text{partition } \lambda \mid \text{type } \lambda \text{ occurs in } O(\text{Det}_n) \} \]
\[\subseteq S(\text{Sym}^n \mathbb{C}^n) := \{ \text{partition } \lambda \mid \text{type } \lambda \text{ occurs in } O(\text{Sym}^n \mathbb{C}^n) \}. \]

We search for \(\lambda \) in \(S(\text{Sym}^n \mathbb{C}^n) \setminus S(\text{Det}_n) \).

- Both sets are finitely generated \textbf{monoids}.
- For a monoid \(S \) let \(A := S - S \) the group generated by \(S \).
 S is called \textbf{saturated} if
 \[\forall x \in A \forall k \in \mathbb{N}_{>0} : \ kx \in S \Rightarrow x \in S. \]

- The \textbf{saturation} \(\text{Sat}(S) \) of a monoid \(S \) is the smallest saturated monoid that contains \(S \).
- The difference \(\text{Sat}(S) \setminus S \) is called the set of \textbf{holes} of \(S \).
- Let \(S(\text{Det}_n)_{\leq n} \) denote the submonoid where we take only partitions with at most \(n \) rows. This is a natural restriction in geometric complexity theory.

\textbf{Our main contribution}

\[\text{Sat}(S(\text{Det}_n)_{\leq n}) = \{ \lambda \mid \text{the number of boxes of } \lambda \text{ is divisible by } n \}. \]

- Conclusion: The approach with the saturation \(\text{Sat}(S(\text{Det}_n)) \) is too coarse. We have to look at the holes of \(S(\text{Det}_n) \).
\[S(\text{Det}_n) := \{ \text{partition } \lambda \mid \text{type } \lambda \text{ occurs in } O(\text{Det}_n) \} \]
\[\subseteq S(\text{Sym}^n \mathbb{C}^n^2) := \{ \text{partition } \lambda \mid \text{type } \lambda \text{ occurs in } O(\text{Sym}^n \mathbb{C}^n^2) \}. \]

We search for \(\lambda \) in \(S(\text{Sym}^n \mathbb{C}^n^2) \setminus S(\text{Det}_n) \).

- Both sets are finitely generated **monoids**.
- For a monoid \(S \) let \(A := S - S \) the group generated by \(S \).
 - \(S \) is called **saturated** if
 \[\forall x \in A \forall k \in \mathbb{N}_{>0} : \ kx \in S \Rightarrow x \in S. \]

- The **saturation** \(\text{Sat}(S) \) of a monoid \(S \) is the smallest saturated monoid that contains \(S \).
- The difference \(\text{Sat}(S) \setminus S \) is called the set of **holes** of \(S \).
- Let \(S(\text{Det}_n)_{\leq n} \) denote the submonoid where we take only partitions with at most \(n \) rows. This is a natural restriction in geometric complexity theory.

Our main contribution

\[\text{Sat}(S(\text{Det}_n)_{\leq n}) = \{ \lambda \mid \text{the number of boxes of } \lambda \text{ is divisible by } n \}. \]

- Conclusion: The approach with the saturation \(\text{Sat}(S(\text{Det}_n)) \) is too coarse. We have to look at the holes of \(S(\text{Det}_n) \).
\[S(\text{Det}_n) := \{\text{partition } \lambda \mid \text{type } \lambda \text{ occurs in } \mathcal{O}(\text{Det}_n)\} \]

\[\subseteq S(\text{Sym}^n \mathbb{C}^2) := \{\text{partition } \lambda \mid \text{type } \lambda \text{ occurs in } \mathcal{O}(\text{Sym}^n \mathbb{C}^2)\}. \]

We search for \(\lambda \) in \(S(\text{Sym}^n \mathbb{C}^2) \setminus S(\text{Det}_n) \).

- Both sets are finitely generated **monoids**.
- For a monoid \(S \) let \(A := S - S \) the group generated by \(S \).
 - \(S \) is called **saturated** if
 \[\forall x \in A \forall k \in \mathbb{N}_{>0} : \quad kx \in S \Rightarrow x \in S. \]

- The **saturation** \(\text{Sat}(S) \) of a monoid \(S \) is the smallest saturated monoid that contains \(S \).
- The difference \(\text{Sat}(S) \setminus S \) is called the set of **holes** of \(S \).
- Let \(S(\text{Det}_n)_{\leq n} \) denote the submonoid where we take only partitions with at most \(n \) rows. This is a natural restriction in geometric complexity theory.

Our main contribution

\[\text{Sat}(S(\text{Det}_n)_{\leq n}) = \{\lambda \mid \text{the number of boxes of } \lambda \text{ is divisible by } n\}. \]

- Conclusion: The approach with the saturation \(\text{Sat}(S(\text{Det}_n)) \) is too coarse. We have to look at the holes of \(S(\text{Det}_n) \).
\[S(\text{Det}_n) := \{ \text{partition } \lambda \mid \text{type } \lambda \text{ occurs in } O(\text{Det}_n) \} \]
\[\subseteq S(\text{Sym}^n \mathbb{C}^2) := \{ \text{partition } \lambda \mid \text{type } \lambda \text{ occurs in } O(\text{Sym}^n \mathbb{C}^2) \}. \]

We search for \(\lambda \) in \(S(\text{Sym}^n \mathbb{C}^2) \setminus S(\text{Det}_n) \).

- Both sets are finitely generated monoids.
- For a monoid \(S \) let \(A := S - S \) the group generated by \(S \).
 - \(S \) is called saturated if
 \[\forall x \in A \forall k \in \mathbb{N}_{>0} : \; kx \in S \Rightarrow x \in S. \]

- The saturation \(\text{Sat}(S) \) of a monoid \(S \) is the smallest saturated monoid that contains \(S \).
- The difference \(\text{Sat}(S) \setminus S \) is called the set of holes of \(S \).
- Let \(S(\text{Det}_n)_{\leq n} \) denote the submonoid where we take only partitions with at most \(n \) rows. This is a natural restriction in geometric complexity theory.

Our main contribution

\[\text{Sat}(S(\text{Det}_n)_{\leq n}) = \{ \lambda \mid \text{the number of boxes of } \lambda \text{ is divisible by } n \}. \]

- Conclusion: The approach with the saturation \(\text{Sat}(S(\text{Det}_n)) \) is too coarse. We have to look at the holes of \(S(\text{Det}_n) \).
\[S(\text{Det}_n) := \{ \text{partition } \lambda \mid \text{type } \lambda \text{ occurs in } \mathcal{O}(\text{Det}_n) \} \]
\[\subseteq S(\text{Sym}^n \mathbb{C}^2) := \{ \text{partition } \lambda \mid \text{type } \lambda \text{ occurs in } \mathcal{O}(\text{Sym}^n \mathbb{C}^2) \}. \]

We search for \(\lambda \) in \(S(\text{Sym}^n \mathbb{C}^2) \setminus S(\text{Det}_n) \).

- Both sets are finitely generated monoids.
- For a monoid \(S \) let \(A := S - S \) the group generated by \(S \).
 - \(S \) is called saturated if
 \[
 \forall x \in A \forall k \in \mathbb{N}_{>0} : \ kx \in S \Rightarrow x \in S.
 \]
- The saturation \(\text{Sat}(S) \) of a monoid \(S \) is the smallest saturated monoid that contains \(S \).
- The difference \(\text{Sat}(S) \setminus S \) is called the set of holes of \(S \).
- Let \(S(\text{Det}_n)_{\leq n} \) denote the submonoid where we take only partitions with at most \(n \) rows. This is a natural restriction in geometric complexity theory.

Our main contribution

\[\text{Sat}(S(\text{Det}_n)_{\leq n}) = \{ \lambda \mid \text{the number of boxes of } \lambda \text{ is divisible by } n \}. \]

Conclusion: The approach with the saturation \(\text{Sat}(S(\text{Det}_n)) \) is too coarse. We have to look at the holes of \(S(\text{Det}_n) \).
\[S(\text{Det}_n) := \{ \text{partition } \lambda \mid \text{type } \lambda \text{ occurs in } \mathcal{O}(\text{Det}_n) \} \]
\[\subseteq S(\text{Sym}^n \mathbb{C}^n) := \{ \text{partition } \lambda \mid \text{type } \lambda \text{ occurs in } \mathcal{O}(\text{Sym}^n \mathbb{C}^n) \}. \]

We search for \(\lambda \) in \(S(\text{Sym}^n \mathbb{C}^n) \setminus S(\text{Det}_n) \).

- Both sets are finitely generated monoids.
- For a monoid \(S \) let \(A := S - S \) the group generated by \(S \).

 \(S \) is called saturated if
 \[
 \forall x \in A \forall k \in \mathbb{N}_{>0} : \ kx \in S \Rightarrow x \in S.
 \]

- The saturation \(\text{Sat}(S) \) of a monoid \(S \) is the smallest saturated monoid that contains \(S \).
- The difference \(\text{Sat}(S) \setminus S \) is called the set of holes of \(S \).
- Let \(S(\text{Det}_n)_{\leq n} \) denote the submonoid where we take only partitions with at most \(n \) rows. This is a natural restriction in geometric complexity theory.

Our main contribution

\[\text{Sat}(S(\text{Det}_n)_{\leq n}) = \{ \lambda \mid \text{the number of boxes of } \lambda \text{ is divisible by } n \} \]

- Conclusion: The approach with the saturation \(\text{Sat}(S(\text{Det}_n)) \) is too coarse. We have to look at the holes of \(S(\text{Det}_n) \).
\[S(\text{Det}_n) := \{ \text{partition } \lambda \mid \text{type } \lambda \text{ occurs in } O(\text{Det}_n) \} \]
\[\subseteq S(\text{Sym}^n \mathbb{C}^2) := \{ \text{partition } \lambda \mid \text{type } \lambda \text{ occurs in } O(\text{Sym}^n \mathbb{C}^2) \}. \]

We search for \(\lambda \) in \(S(\text{Sym}^n \mathbb{C}^2) \setminus S(\text{Det}_n) \).

- Both sets are finitely generated monoids.
- For a monoid \(S \) let \(A := S - S \) the group generated by \(S \).
 - \(S \) is called saturated if
 \[\forall x \in A \forall k \in \mathbb{N}_{>0} : \ kx \in S \Rightarrow x \in S. \]
- The saturation \(\text{Sat}(S) \) of a monoid \(S \) is the smallest saturated monoid that contains \(S \).
- The difference \(\text{Sat}(S) \setminus S \) is called the set of holes of \(S \).
- Let \(S(\text{Det}_n)_{\leq n} \) denote the submonoid where we take only partitions with at most \(n \) rows. This is a natural restriction in geometric complexity theory.

Our main contribution

\[\text{Sat}(S(\text{Det}_n)_{\leq n}) = \{ \lambda \mid \text{the number of boxes of } \lambda \text{ is divisible by } n \}. \]

- Conclusion: The approach with the saturation \(\text{Sat}(S(\text{Det}_n)) \) is too coarse. We have to look at the holes of \(S(\text{Det}_n) \).
Related work by Shrawan Kumar

Thm (Kumar 2012)

For n even, provided the Alon-Tarsi conjecture holds for n, we have that $S(\text{Det}_n)_{\leq n}$ contains all partitions where each row length is divisible by n.

- This is a direct statement about $S(\text{Det}_n)$, not just its saturation.
- But: It is only concerned with stretched partitions.
- And needs the Alon-Tarsi conjecture.
- Kumar’s proof actually studies a subvariety: Let $\text{Ch}_n \subseteq \text{Det}_n$ be the orbit closure

\[\text{Ch}_n := \overline{\text{GL}_n(\sum X_{1,1}X_{2,2}\cdots X_{n,n})}. \]

Since $\text{Ch}_n \subseteq \text{Det}_n$ it follows $S(\text{Ch}_n) \subseteq S(\text{Det}_n)$.
Kumar’s statement holds for $S(\text{Ch}_n)$ and not just for $S(\text{Det}_n)$.
- We follow the idea of studying Ch_n.

Related work by Shrawan Kumar

Thm (Kumar 2012)

For n even, provided the Alon-Tarsi conjecture holds for n, we have that $S(\text{Det}_n)_{\leq n}$ contains all partitions where each row length is divisible by n.

- This is a direct statement about $S(\text{Det}_n)$, not just its saturation.
- But: It is only concerned with stretched partitions.
- And needs the Alon-Tarsi conjecture.
- Kumar’s proof actually studies a subvariety: Let $\text{Ch}_n \subseteq \text{Det}_n$ be the orbit closure

\[\text{Ch}_n := \text{GL}_n^2(X_{1,1}X_{2,2}\cdots X_{n,n}). \]

Since $\text{Ch}_n \subseteq \text{Det}_n$ it follows $S(\text{Ch}_n) \subseteq S(\text{Det}_n)$.
Kumar’s statement holds for $S(\text{Ch}_n)$ and not just for $S(\text{Det}_n)$.
- We follow the idea of studying Ch_n.
Related work by Shrawan Kumar

Thm (Kumar 2012)

For n even, provided the Alon-Tarsi conjecture holds for n, we have that $S(\text{Det}_n)_{\leq n}$ contains all partitions where **each row length** is divisible by n.

- This is a direct statement about $S(\text{Det}_n)$, not just its saturation.
- But: It is only concerned with **stretched** partitions.
- And needs the Alon-Tarsi conjecture.
- Kumar’s proof actually studies a subvariety: Let $\text{Ch}_n \subseteq \text{Det}_n$ be the orbit closure

$$\text{Ch}_n := \text{GL}_n^2(X_{1,1}X_{2,2} \cdots X_{n,n}).$$

Since $\text{Ch}_n \subseteq \text{Det}_n$ it follows $S(\text{Ch}_n) \subseteq S(\text{Det}_n)$.
Kumar’s statement holds for $S(\text{Ch}_n)$ and not just for $S(\text{Det}_n)$.
- We follow the idea of studying Ch_n.
Related work by Shrawan Kumar

Thm (Kumar 2012)

For n even, provided the Alon-Tarsi conjecture holds for n, we have that $S(\text{Det}_n)_{\leq n}$ contains all partitions where each row length is divisible by n.

- This is a direct statement about $S(\text{Det}_n)$, not just its saturation.
- But: It is only concerned with **stretched** partitions.
- And needs the Alon-Tarsi conjecture.

Kumar’s proof actually studies a subvariety: Let $\text{Ch}_n \subseteq \text{Det}_n$ be the orbit closure

$$\text{Ch}_n := \text{GL}_n^2(X_{1,1}X_{2,2}\cdots X_{n,n}).$$

Since $\text{Ch}_n \subseteq \text{Det}_n$ it follows $S(\text{Ch}_n) \subseteq S(\text{Det}_n)$.

Kumar’s statement holds for $S(\text{Ch}_n)$ and not just for $S(\text{Det}_n)$.

- We follow the idea of studying Ch_n.
Related work by Shrawan Kumar

Thm (Kumar 2012)

For \(n \) even, provided the Alon-Tarsi conjecture holds for \(n \), we have that \(S(\text{Det}_n)_{\leq n} \) contains all partitions where each row length is divisible by \(n \).

- This is a direct statement about \(S(\text{Det}_n) \), not just its saturation.
- But: It is only concerned with **stretched** partitions.
- And needs the Alon-Tarsi conjecture.
- Kumar’s proof actually studies a subvariety: Let \(\text{Ch}_n \subseteq \text{Det}_n \) be the orbit closure
 \[
 \text{Ch}_n := \overline{\text{GL}_n^2(X_1,1X_2,2\cdots X_n,n)}.
 \]
 Since \(\text{Ch}_n \subseteq \text{Det}_n \) it follows \(S(\text{Ch}_n) \subseteq S(\text{Det}_n) \).
- Kumar’s statement holds for \(S(\text{Ch}_n) \) and not just for \(S(\text{Det}_n) \).
- We follow the idea of studying \(\text{Ch}_n \).
Related work by Shrawan Kumar

Thm (Kumar 2012)

For n even, provided the Alon-Tarsi conjecture holds for n, we have that $S(\text{Det}_n) \leq_n$ contains all partitions where each row length is divisible by n.

- This is a direct statement about $S(\text{Det}_n)$, not just its saturation.
- But: It is only concerned with *stretched* partitions.
- And needs the Alon-Tarsi conjecture.
- Kumar’s proof actually studies a subvariety: Let $\text{Ch}_n \subseteq \text{Det}_n$ be the orbit closure

$$\text{Ch}_n := \text{GL}_n^2(X_{1,1}X_{2,2} \cdots X_{n,n}).$$

Since $\text{Ch}_n \subseteq \text{Det}_n$ it follows $S(\text{Ch}_n) \subseteq S(\text{Det}_n)$.
Kumar’s statement holds for $S(\text{Ch}_n)$ and not just for $S(\text{Det}_n)$.

- We follow the idea of studying Ch_n.

Related work by Shrawan Kumar

Thm (Kumar 2012)

For n even, provided the Alon-Tarsi conjecture holds for n, we have that $S(\text{Det}_n)_{\leq n}$ contains all partitions where each row length is divisible by n.

- This is a direct statement about $S(\text{Det}_n)$, not just its saturation.
- But: It is only concerned with **stretched** partitions.
- And needs the Alon-Tarsi conjecture.
- Kumar’s proof actually studies a subvariety: Let $\text{Ch}_n \subseteq \text{Det}_n$ be the orbit closure
 \[
 \text{Ch}_n := \text{GL}_n^2(X_{1,1}X_{2,2} \cdots X_{n,n}).
 \]

 Since $\text{Ch}_n \subseteq \text{Det}_n$ it follows $S(\text{Ch}_n) \subseteq S(\text{Det}_n)$.
 Kumar’s statement holds for $S(\text{Ch}_n)$ and not just for $S(\text{Det}_n)$.
- We follow the idea of studying Ch_n.
Saturation and Normalization

- For a monoid S let $A(S) := S - S$ the group generated by S.
- The cone $C_Q(S)$ of S is defined as
 \[C_Q(S) := \{ q\lambda \mid \lambda \in S, \ q \in \mathbb{Q}_{\geq 0} \}. \]

Key Lemma

\[\text{Sat}(S) = A(S) \cap C_Q(S). \]

Key Proposition

Let \widehat{Ch}_n be the normalization of Ch_n. Then

\[\text{Sat}(S(Ch_n)) = \text{Sat}(S(\widehat{Ch}_n)). \]

- It remains to determine $A(S(\widehat{Ch}_n))$ and $C_Q(S(\widehat{Ch}_n))$ to obtain $\text{Sat}(S(\widehat{Ch}_n))$.
- $S(\widehat{Ch}_n)$ can be described in terms of positivity of plethysm coefficients!
Saturation and Normalization

- For a monoid S let $A(S) := S - S$ the group generated by S.
- The cone $C_Q(S)$ of S is defined as

 $$C_Q(S) := \{ q\lambda \mid \lambda \in S, \ q \in \mathbb{Q}_{\geq 0} \}.$$

Key Lemma

$$\text{Sat}(S) = A(S) \cap C_Q(S).$$

Key Proposition

Let $\widehat{\text{Ch}}_n$ be the normalization of Ch_n. Then

$$\text{Sat}(S(\text{Ch}_n)) = \text{Sat}(S(\widehat{\text{Ch}}_n)).$$

- It remains to determine $A(S(\widehat{\text{Ch}}_n))$ and $C_Q(S(\widehat{\text{Ch}}_n))$ to obtain $\text{Sat}(S(\widehat{\text{Ch}}_n))$.
- $S(\widehat{\text{Ch}}_n)$ can be described in terms of positivity of plethysm coefficients!
Saturation and Normalization

- For a monoid S let $A(S) := S - S$ the group generated by S.
- The cone $C_Q(S)$ of S is defined as
 \[C_Q(S) := \{ q\lambda \mid \lambda \in S, \ q \in \mathbb{Q}_{\geq 0} \}. \]

Key Lemma
\[\text{Sat}(S) = A(S) \cap C_Q(S). \]

Key Proposition
Let \widehat{Ch}_n be the normalization of Ch_n. Then
\[\text{Sat}(S(Ch_n)) = \text{Sat}(S(\widehat{Ch}_n)). \]

- It remains to determine $A(S(\widehat{Ch}_n))$ and $C_Q(S(\widehat{Ch}_n))$ to obtain $\text{Sat}(S(\widehat{Ch}_n))$.
- $S(\widehat{Ch}_n)$ can be described in terms of positivity of plethysm coefficients!
Saturation and Normalization

- For a monoid S let $A(S) := S - S$ the group generated by S.
- The cone $C_Q(S)$ of S is defined as

 $$C_Q(S) := \{ q\lambda \mid \lambda \in S, \ q \in \mathbb{Q}_{\geq 0} \}.$$

Key Lemma

$\text{Sat}(S) = A(S) \cap C_Q(S).$

Key Proposition

Let \widetilde{Ch}_n be the normalization of Ch_n. Then

$$\text{Sat}(S(Ch_n)) = \text{Sat}(S(\widetilde{Ch}_n)).$$

- It remains to determine $A(S(\widetilde{Ch}_n))$ and $C_Q(S(\widetilde{Ch}_n))$ to obtain $\text{Sat}(S(\widetilde{Ch}_n))$.
- $S(\widetilde{Ch}_n)$ can be described in terms of positivity of plethysm coefficients!
Saturation and Normalization

- For a monoid S let $A(S) := S - S$ the group generated by S.
- The cone $C_Q(S)$ of S is defined as
 \[C_Q(S) := \{ q\lambda \mid \lambda \in S, \ q \in \mathbb{Q}_{\geq 0} \}. \]

Key Lemma
\[\text{Sat}(S) = A(S) \cap C_Q(S). \]

Key Proposition
Let $\widehat{\text{Ch}_n}$ be the normalization of Ch_n. Then
\[\text{Sat}(S(\text{Ch}_n)) = \text{Sat}(S(\widehat{\text{Ch}_n})). \]

- It remains to determine $A(S(\widehat{\text{Ch}_n}))$ and $C_Q(S(\widehat{\text{Ch}_n}))$ to obtain $\text{Sat}(S(\widehat{\text{Ch}_n}))$.
- $S(\widehat{\text{Ch}_n})$ can be described in terms of positivity of plethysm coefficients!
Saturation and Normalization

- For a monoid S let $A(S) := S - S$ the group generated by S.
- The cone $C_Q(S)$ of S is defined as
 \[C_Q(S) := \{ q\lambda \mid \lambda \in S, \ q \in \mathbb{Q}_{\geq 0} \}. \]

Key Lemma
\[
\text{Sat}(S) = A(S) \cap C_Q(S).
\]

Key Proposition

Let \widetilde{Ch}_n be the normalization of Ch_n. Then
\[
\text{Sat}(S(Ch_n)) = \text{Sat}(S(\widetilde{Ch}_n)).
\]

- It remains to determine $A(S(\widetilde{Ch}_n))$ and $C_Q(S(\widetilde{Ch}_n))$ to obtain $\text{Sat}(S(\widetilde{Ch}_n))$.
- $S(\widetilde{Ch}_n)$ can be described in terms of positivity of plethysm coefficients!
Proof Idea

- $S(\widetilde{\text{Ch}_n}) = \{ \lambda \mid \lambda \text{ occurs in } \text{Sym}^n(\text{Sym}^{\lfloor \lambda \rfloor/n} \mathbb{C}^n) \}.$
- $C_Q(S(\widetilde{\text{Ch}_n}))$ contains all partitions with at most n rows (Bürgisser, Christandl, 2009).
- The result for $A(S(\widetilde{\text{Ch}_n}))$ relies on the explicit construction of partitions with positive plethysm coefficients. We use the duality $\bigwedge^k \text{Sym}^k V \leftrightarrow \text{Sym}^k \text{Sym}^k V$.

For every k: Two long rows and a long first column of length k. The first two rows are treated separately.

- Linear algebra: With integer linear combinations we obtain all required partitions (upper triangular system of linear equations with 1s on the diagonal).

Conclusion

- To make the approach with $S(\text{Det}_n)$ work we have to look at those λ that are holes of $S(\text{Det}_n)$.
Proof Idea

- \(S(\widehat{Ch}_n) = \{ \lambda \mid \lambda \text{ occurs in } \text{Sym}^n(\text{Sym}^{\lfloor \lambda \rfloor/n} \mathbb{C}^n) \} \).
- \(C_Q(S(\widehat{Ch}_n)) \) contains all partitions with at most \(n \) rows (Bürgisser, Christandl, 2009)
 - The result for \(A(S(\widehat{Ch}_n)) \) relies on the explicit construction of partitions with positive plethysm coefficients. We use the duality \(\wedge^k \text{Sym}^k V \leftrightarrow \text{Sym}^k \text{Sym}^k V \).

For every \(k \): Two long rows and a long first column of length \(k \). The first two rows are treated separately.

- Linear algebra: With integer linear combinations we obtain all required partitions (upper triangular system of linear equations with 1s on the diagonal).

Conclusion

- To make the approach with \(S(\text{Det}_n) \) work we have to look at those \(\lambda \) that are holes of \(S(\text{Det}_n) \).
Proof Idea

- $S(\widehat{\text{Ch}_n}) = \{\lambda \mid \lambda \text{ occurs in } \text{Sym}^n(\text{Sym}^{\lfloor \lambda \rfloor/n} \mathbb{C}^n)\}$.

- $C_Q(S(\widehat{\text{Ch}_n}))$ contains all partitions with at most n rows (Bürgisser, Christandl, I 2009)

- The result for $A(S(\widehat{\text{Ch}_n}))$ relies on the explicit construction of partitions with positive plethysm coefficients. We use the duality $\wedge^k \text{Sym}^k V \leftrightarrow \text{Sym}^k \text{Sym}^k V$.

For every k: Two long rows and a long first column of length k. The first two rows are treated separately.

- Linear algebra: With integer linear combinations we obtain all required partitions (upper triangular system of linear equations with 1s on the diagonal).

Conclusion

- To make the approach with $S(\text{Det}_n)$ work we have to look at those λ that are holes of $S(\text{Det}_n)$.

Proof Idea

- \(S(\widetilde{\text{Ch}}_n) = \{ \lambda \mid \lambda \text{ occurs in } \text{Sym}^n(\text{Sym}^{\left| \lambda \right|/n} \mathbb{C}^n) \} \).
- \(C_Q(S(\widetilde{\text{Ch}}_n)) \) contains all partitions with at most \(n \) rows (Bürgisser, Christandl, 2009).
- The result for \(A(S(\widetilde{\text{Ch}}_n)) \) relies on the \textbf{explicit construction} of partitions with positive plethysm coefficients. We use the duality \(\wedge^k \text{Sym}^k V \leftrightarrow \text{Sym}^k \text{Sym}^k V \).

For every \(k \): Two long rows and a long first column of length \(k \). The first two rows are treated separately.

- Linear algebra: With integer linear combinations we obtain all required partitions (upper triangular system of linear equations with 1s on the diagonal).

Conclusion

- To make the approach with \(S(\text{Det}_n) \) work we have to look at those \(\lambda \) that are \textbf{holes} of \(S(\text{Det}_n) \).
Proof Idea

- $S(\widetilde{Ch}_n) = \{ \lambda \mid \lambda \text{ occurs in } \text{Sym}^n(\text{Sym}^{|\lambda|/n} \mathbb{C}^n) \}$.

- $C_Q(S(\widetilde{Ch}_n))$ contains all partitions with at most n rows (Bürgisser, Christandl, 2009).

- The result for $A(S(\widetilde{Ch}_n))$ relies on the explicit construction of partitions with positive plethysm coefficients. We use the duality $\bigwedge^k \text{Sym}^k V \leftrightarrow \text{Sym}^k \text{Sym}^k V$.

For every k: Two long rows and a long first column of length k. The first two rows are treated separately.

- Linear algebra: With integer linear combinations we obtain all required partitions (upper triangular system of linear equations with 1s on the diagonal).

Conclusion

- To make the approach with $S(\text{Det}_n)$ work we have to look at those λ that are holes of $S(\text{Det}_n)$.
Proof Idea

- \(S(\widetilde{Ch}_n) = \{ \lambda \mid \lambda \text{ occurs in } \operatorname{Sym}^n(\operatorname{Sym}^{\lvert \lambda \rvert/n \C^n}) \} \).
- \(C_Q(S(\widetilde{Ch}_n)) \) contains all partitions with at most \(n \) rows (Bürgisser, Christandl, 2009).
- The result for \(A(S(\widetilde{Ch}_n)) \) relies on the explicit construction of partitions with positive plethysm coefficients. We use the duality \(\bigwedge^k \operatorname{Sym}^k V \leftrightarrow \operatorname{Sym}^k \operatorname{Sym}^k V \).

For every \(k \): Two long rows and a long first column of length \(k \). The first two rows are treated separately.

- Linear algebra: With integer linear combinations we obtain all required partitions (upper triangular system of linear equations with 1s on the diagonal).

Conclusion

- To make the approach with \(S(\operatorname{Det}_n) \) work we have to look at those \(\lambda \) that are holes of \(S(\operatorname{Det}_n) \).
Proof Idea

- \(S(\widehat{Ch}_n) = \{ \lambda \mid \lambda \text{ occurs in } \text{Sym}^n(\text{Sym}^{|\lambda|/n} \mathbb{C}^n) \} \).
- \(C_Q(S(\widehat{Ch}_n)) \) contains all partitions with at most \(n \) rows (Bürgisser, Christandl, 2009).
- The result for \(A(S(\widehat{Ch}_n)) \) relies on the explicit construction of partitions with positive plethysm coefficients. We use the duality \(\wedge^k \text{Sym}^k V \leftrightarrow \text{Sym}^k \text{Sym}^k V \).

For every \(k \): Two long rows and a long first column of length \(k \). The first two rows are treated separately.

- Linear algebra: With integer linear combinations we obtain all required partitions (upper triangular system of linear equations with 1s on the diagonal).

Conclusion

- To make the approach with \(S(\text{Det}_n) \) work we have to look at those \(\lambda \) that are holes of \(S(\text{Det}_n) \).
Proof Idea

- $S(\mathcal{Ch}_n) = \{ \lambda | \lambda \text{ occurs in } \text{Sym}^n(\text{Sym}^{\lfloor \lambda \rfloor/n} \mathbb{C}^n) \}$.

- $C_Q(S(\mathcal{Ch}_n))$ contains all partitions with at most n rows (Bürgisser, Christandl, 2009).

- The result for $A(S(\mathcal{Ch}_n))$ relies on the explicit construction of partitions with positive plethysm coefficients. We use the duality $\bigwedge^k \text{Sym}^k V \leftrightarrow \text{Sym}^k \text{Sym}^k V$.

For every k: Two long rows and a long first column of length k. The first two rows are treated separately.

- Linear algebra: With integer linear combinations we obtain all required partitions (upper triangular system of linear equations with 1s on the diagonal).

Conclusion

- To make the approach with $S(\text{Det}_n)$ work we have to look at those λ that are holes of $S(\text{Det}_n)$.

Holes

- Holes have an interesting structure, even for Ch_3.
- For concreteness we calculated all holes for Ch_3 up to degree 9.
- A family of holes:
 For $j, k \in \mathbb{N}$ the partition $\lambda = (7 + 4k + 3j, 3 + 4k, 2 + 4k)$ is in $S(\text{Sym}^3 \mathbb{C}^3) \setminus S(\text{Ch}_3)$.
Holes have an interesting structure, even for Ch_3.

For concreteness we calculated all holes for Ch_3 up to degree 9.

A family of holes:

For $j, k \in \mathbb{N}$ the partition $\lambda = (7 + 4k + 3j, 3 + 4k, 2 + 4k)$ is in $S(\text{Sym}^3 \mathbb{C}^3) \setminus S(\text{Ch}_3)$.
Holes

- Holes have an interesting structure, even for Ch_3.
- For concreteness we calculated all holes for Ch_3 up to degree 9.
- A family of holes:
 For $j, k \in \mathbb{N}$ the partition $\lambda = (7 + 4k + 3j, 3 + 4k, 2 + 4k)$ is in $S(\text{Sym}^3 \mathbb{C}^3) \setminus S(\text{Ch}_3)$.
Thank you for your attention.