Maximum likelihood for dual varieties

Jose Israel Rodriguez
University of Notre Dame

SIAM AG15
August 4, 2015
A homogeneous formulation

Xiaoxian provided an affine “square” formulation, here is a homog. formulation.

- Consider the model X defined by $p_1 + 2p_2 + 3p_3 - 4p_4 = 0$ and $p_1 + p_2 + p_3 + p_4 = p_s$.
 - We homogenized the equation $p_1 + p_2 + p_3 + p_4 = 1$ with respect to the unknown p_s.

- The model X is considered as a projective variety in \mathbb{P}^4.
 - The codimension of X is 2.

- We define the open variety X° as

$$X^\circ := X \setminus \{\text{coordinate hyperplanes}\}$$

$$X^\circ = \{p \in X : p \text{ has nonzero coordinates}\}.$$

- For general u, critical points will have nonzero coordinates
 - So it is ok to consider X° instead of X.

A homogeneous formulation
Xiaoxian provided an affine “square” formulation, here is a homog. formulation.

- Consider the model X defined by $p_1 + 2p_2 + 3p_3 - 4p_4 = 0$ and $p_1 + p_2 + p_3 + p_4 = p_s$.
 - We homogenized the equation $p_1 + p_2 + p_3 + p_4 = 1$ with respect to the unknown p_s.

- The model X is considered as a projective variety in \mathbb{P}^4.
 - The codimension of X is 2.

- We define the open variety X^o as

\[
X^o := X \backslash \{\text{coordinate hyperplanes}\}
\]

\[
X^o = \{p \in X : p \text{ has nonzero coordinates}\}.
\]

- For general u, critical points will have nonzero coordinates
 - So it is ok to consider X^o instead of X.

Dual Varieties

Dual varieties have been studied for over a hundred years.

- Consider X in \mathbb{P}^{n+1}.
- The **conormal variety** of X is defined to be
 \[N_X := \{(p, b) : b \perp T_p X_{\text{reg}}\} \subset \mathbb{P}^{n+1} \times \mathbb{P}^{n+1}. \]
 - Draw a picture.

- The **dual variety** of X, denoted X^* is the projection of N_X to the projective space associated to the b coordinates.
 - Projecting N_X to the p coordinates recovers the original X.
- The dual of the dual gives back the original variety: $(X^*)^* = X$.
Example 1

We compute a conormal variety.

- Consider X defined by

$$p_1^3 + 5p_2^3 + 7p_3^3 = 0, \quad p_1 + p_2 + p_3 - p_s = 0.$$

- The conormal variety \mathcal{N}_X is given by the 3×3 minors of

$$\begin{bmatrix}
 b_1 & b_2 & b_3 & b_s \\
 1 & 1 & 1 & -1 \\
 3p_1^2 & 15p_2^2 & 21p_3^2 & 0
\end{bmatrix}$$

and

$$p_1^3 + 5p_2^3 + 7p_3^3 = 0, \quad p_1 + p_2 + p_3 - p_s = 0.$$

- In terms of normal vectors and Lagrange multipliers we have

$$[b_1 : b_2 : b_3 : b_s] = \lambda_1 \nabla f_1 + \lambda_2 \nabla f_2.$$

- For singular varieties we need to saturate by the singular locus.
Example 1

We compute a conormal variety.

- Consider X defined by

 \[p_1^3 + 5p_2^3 + 7p_3^3 = 0, \quad p_1 + p_2 + p_3 - p_s = 0. \]

- The conormal variety \mathcal{N}_X is given by the 3×3 minors of

 \[
 \begin{bmatrix}
 b_1 & b_2 & b_3 & b_s \\
 1 & 1 & 1 & -1 \\
 3p_1^2 & 15p_2^2 & 21p_3^2 & 0
 \end{bmatrix}
 \]

 and

 \[p_1^3 + 5p_2^3 + 7p_3^3 = 0, \quad p_1 + p_2 + p_3 - p_s = 0. \]

- In terms of normal vectors and Lagrange multipliers we have

 \[[b_1 : b_2 : b_3 : b_s] = \lambda_1 \nabla f_1 + \lambda_2 \nabla f_2. \]

- For singular varieties we need to saturate by the singular locus.
Example 2

The dual variety for a linear space is easy to compute.

- Consider X defined by

\[p_1 + 2p_2 + 3p_3 - 4p_4 = 0, \quad p_1 + p_2 + p_3 + p_4 - p_s = 0. \]

- The dual variety X^* is given by the 3×3 minors of

\[
\begin{bmatrix}
 b_1 & b_2 & b_3 & b_4 & b_s \\
 1 & 1 & 1 & 1 & -1 \\
 1 & 2 & 3 & -4 & 0
\end{bmatrix}
\]

- In terms of normal vectors and Lagrange multipliers we have

\[
\]

- The conormal variety of a linear space X is the product of its dual variety and self:

\[\mathcal{N}_X \subseteq X \times X^* \quad \text{equality for a linear space } X. \]
Example 2
The dual variety for a linear space is easy to compute.

- Consider X defined by

$$p_1 + 2p_2 + 3p_3 - 4p_4 = 0, \quad p_1 + p_2 + p_3 + p_4 - p_s = 0.$$

- The dual variety X^* is given by the 3×3 minors of

$$
\begin{bmatrix}
 b_1 & b_2 & b_3 & b_4 & b_s \\
 1 & 1 & 1 & 1 & -1 \\
 1 & 2 & 3 & -4 & 0
\end{bmatrix}.
$$

- In terms of normal vectors and Lagrange multipliers we have

- The conormal variety of a linear space X is the product of its dual variety and self:

$$\mathcal{N}_X \subseteq X \times X^*$$ equality for a linear space X.
What is maximum likelihood estimation?

We give a formulation of the MLE problem in terms of conormal varieties.

- Maximum likelihood estimation is solving the equation below on \mathcal{N}_X

\[
[p_1 b_1 : p_2 b_2 : \cdots : p_s b_s] = [u_1 : \cdots : u_n : u_s], \quad u_s := -(u_1 + \cdots + u_n).
\]

- Why is this?
 - We have a critical point, if the gradient $\left[\frac{u_1}{p_1} : \frac{u_2}{p_2} : \cdots : \frac{u_n}{p_n} : \frac{u_s}{p_s}\right]$ of the likelihood function is in the row space of the Jacobian of X.
 - We have a point (p, b) is in the conormal variety, if b is in the row space of the Jacobian evaluated at p.
 - In other words $[b_1 : b_2 : \cdots : b_s] = \left[\frac{u_1}{p_1} : \frac{u_2}{p_2} : \cdots : \frac{u_n}{p_n} : \frac{u_s}{p_s}\right]$ on \mathcal{N}_X for MLE.
Our result places maximum likelihood estimation in the context of conormal varieties.

Theorem [-]

Fix an algebraic statistical model X and suppose $(p, b) \in N_X$. For general u, the following relation holds

$$[p_1 b_1 : \cdots : p_n b_n : p_s b_s] = [u_1 : \cdots : u_n : u_s].$$

iff $[p_1 : \cdots : p_n : p_s]$ is a critical point of $\ell_u(p) = p_1^{u_1} \cdots p_n^{u_n} p_s^{u_s}$ on X.

A bijection between critical points
We give a bijection between critical points of two likelihood functions.

Consider $\ell_u(b) = b_1^{u_1} \cdots b_n^{u_n} b_s^{u_s}$ on X^*.

Corollary [-]

Fix an algebraic statistical model X and suppose $(p, b) \in N_X$. For general u, the following relation holds

$$[p_1 b_1 : \cdots : p_n b_n : p_s b_s] = [u_1 : \cdots : u_n : u_s]$$

iff $[b_1 : \cdots : b_n : b_s]$ is a critical point of $\ell_u(b)$ on X^*.

Corollary [-]

For general u, there is a bijection between critical points of $\ell_u(p)$ on X with critical point of $\ell_u(b)$ on X^* given by

$$[p_1 b_1 : \cdots : p_n b_n : p_s b_s] = [u_1 : \cdots : u_n : u_s].$$
Using the bijection summary

- If we find the critical points of $\ell_u(b)$ on X^* we can recover the critical points of $\ell_u(p)$ on X:

 $$[b_1 : \cdots : b_n : b_s] \mapsto \left[\frac{u_1}{b_1} : \cdots : \frac{u_n}{b_n} : \frac{u_s}{b_s} \right] = [p_1 : \cdots : p_n : p_s].$$

- In the following slides we will illustrate another notion of duality called ML-duality.
Symmetric matrices

- Consider the mixture model \mathcal{M}_m for pairs of m-sided dice. Denote its Zariski closure by X_m. Xiaoxian discussed the case for $m = 3$.

Theorem

The ML-degrees of X_m include the following:

<table>
<thead>
<tr>
<th>m</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r = 1$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$r = 2$</td>
<td>6</td>
<td>37</td>
<td>270</td>
<td>2341</td>
</tr>
<tr>
<td>$r = 3$</td>
<td>1</td>
<td>37</td>
<td>1394</td>
<td></td>
</tr>
<tr>
<td>$r = 4$</td>
<td>1</td>
<td>270</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$r = 5$</td>
<td></td>
<td>1</td>
<td>2341</td>
<td></td>
</tr>
<tr>
<td>$r = 6$</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

- Reference: “Maximum likelihood for matrices with rank constraints”
 - J. Hauenstein, [], and B. Sturmfels using Bertini.
Theorem

[Draisma and -] The symmetry above holds in general and induces a natural bijection between sets of critical points called ML-duality.

- The dual MLE problem gives a bijection between critical points in \(p \) coordinates and \(b \) coordinates.
- ML-duality gives a bijection between critical points in \(p \) coordinates and other critical points in \(p \) coordinates.
Topology

- Let X^o denote the open variety $X \setminus \{\text{coordinate hyperplanes}\}$.

Theorem [Huh]

The ML degree of the *smooth* variety X equals the signed Euler characteristic of X^o, i.e.

$$\chi(X^o) = (-1)^{\dim X} \text{MLdegree}(X).$$

- Generalizes of this theorem to singular varieties exist and involve Euler obstructions and Whitney stratifications.

- **Question**: Can we give a topological argument for ML-duality of matrices?
Summary

- Statistics and algebraic statistics.
- Real root classification.
- Critical points: ED degree and ML degree.
- Topological and other tools get closed form formulas.
- Symbolic and numerical computations.
- Homotopy continuation for the ML degree:
 - Draw a picture.
Thank You

Contact information

- Jose Israel Rodriguez
- jo.ro@ND.edu
- http://www.nd.edu/~jrodrig18/
Outline

- Statistics
 - Mixture model
- Applied algebraic geometry
 - Critical points
- Topology
 - ML degree
 - Euler obstructions