Tropical lower bounds for extended formulations

Yaroslav Shitov

National Research University
Higher School of Economics,
Moscow

yaroslav-shitov@yandex.ru

SIAM Conference on Applied Algebraic Geometry
National Institute for Mathematical Sciences, Daejeon, Korea, 2015
Extended formulations: A brief overview of history
Extended formulations: A brief overview of history

1979. A breakthrough result by Khachiyan. He proves that Linear Programming has polynomial time complexity.
Extended formulations: A brief overview of history

1979. A breakthrough result by Khachiyan. He proves that Linear Programming has polynomial time complexity.

1986. Swart constructs polynomial size extended formulations for the TSP polytope and proves that ...
Extended formulations: A brief overview of history

1979. A breakthrough result by Khachiyan. He proves that Linear Programming has polynomial time complexity.

1986. Swart ”constructs” polynomial size extended formulations for the TSP polytope and ”proves” that ...
Extended formulations: A brief overview of history

1979. A breakthrough result by Khachiyan. He proves that Linear Programming has polynomial time complexity.

1986. Swart ”constructs” polynomial size extended formulations for the TSP polytope and ”proves” that $P = NP$.
Extended formulations: A brief overview of history

1979. A breakthrough result by Khachiyan. He proves that Linear Programming has polynomial time complexity.

1986. Swart ”constructs” polynomial size extended formulations for the TSP polytope and ”proves” that $P = NP$.

1991. Yannakakis publishes a foundational paper on extended formulations. He gives a linear algebraic characterization of extended formulations and proves that Swart’s reasoning cannot be true.
Extended formulations: A brief overview of history

1979. A breakthrough result by Khachiyan. He proves that Linear Programming has polynomial time complexity.

1986. Swart ”constructs” polynomial size extended formulations for the TSP polytope and ”proves” that $P = NP$.

1991. Yannakakis publishes a foundational paper on extended formulations. He gives a linear algebraic characterization of extended formulations and proves that Swart’s reasoning cannot be true.

2012. Fiorini, Massar, Pokutta, Tiwary, de Wolf show that the TSP polytope cannot be described with a linear program of polynomial size.
1979. A breakthrough result by Khachiyan. He proves that Linear Programming has polynomial time complexity.

1986. Swart ”constructs” polynomial size extended formulations for the TSP polytope and ”proves” that $P = NP$.

1991. Yannakakis publishes a foundational paper on extended formulations. He gives a linear algebraic characterization of extended formulations and proves that Swart’s reasoning cannot be true.

2012. Fiorini, Massar, Pokutta, Tiwary, de Wolf show that the TSP polytope cannot be described with a linear program of polynomial size.

2013. Rothvoss shows that the matching polytope cannot be described with a linear program of polynomial size.
Extended formulations: A brief overview of history

1979. A breakthrough result by Khachiyan. He proves that Linear Programming has polynomial time complexity.

1986. Swart "constructs" polynomial size extended formulations for the TSP polytope and "proves" that $P = NP$.

1991. Yannakakis publishes a foundational paper on extended formulations. He gives a linear algebraic characterization of extended formulations and proves that Swart’s reasoning cannot be true.

2012. Fiorini, Massar, Pokutta, Tiwary, de Wolf show that the TSP polytope cannot be described with a linear program of polynomial size.

2013. Rothvoss shows that the matching polytope cannot be described with a linear program of polynomial size.

2014. Lee, Raghavendra, Steurer show that the TSP polytope cannot be described with a semidefinite program of polynomial size.
Extended formulations: Motivation
Motivation: Describing a polytope with a small number of inequalities.
Extended formulations: Motivation

Motivation: Describing a polytope with a small number of inequalities.
How: By introducing new variables.
Extended formulations: Motivation

Motivation: Describing a polytope with a small number of inequalities.

How: By introducing new variables.

Assume we have a system of inequalities

\[
\begin{align*}
 a_{11}x_1 + \ldots + a_{n1}x_n & \geq b_1, \\
 \vdots \\
 a_{m1}x_1 + \ldots + a_{nm}x_n & \geq b_m.
\end{align*}
\]
Extended formulations: Motivation

Motivation: Describing a polytope with a small number of inequalities.

How: By introducing new variables.

Assume we have a system of inequalities

\[
\begin{align*}
 a_{11}x_1 + \ldots + a_{n1}x_n &\geq b_1, \\
 \vdots \\
 \vdots \\
 a_{m1}x_1 + \ldots + a_{nm}x_n &\geq b_m.
\end{align*}
\]

We want to construct new inequalities in variables \(x_1, \ldots, x_n, y_1, \ldots, y_k \) such that the above system is equivalent to the following:
Extended formulations: Motivation

Motivation: Describing a polytope with a small number of inequalities.
How: By introducing new variables.
Assume we have a system of inequalities

\[
\begin{align*}
 a_{11}x_1 + \ldots + a_{n1}x_n & \geq b_1, \\
 \vdots & \\
 \vdots & \\
 a_{m1}x_1 + \ldots + a_{nm}x_n & \geq b_m.
\end{align*}
\]

We want to construct new inequalities in variables \(x_1, \ldots, x_n, y_1, \ldots, y_k\) such that the above system is equivalent to the following:

\[
\begin{align*}
 \exists y_1 \ldots \exists y_k \quad \left\{
 c_{11}x_1 + \ldots + c_{n1}x_n + d_{11}y_1 + \ldots + d_{1k}y_k & \geq e_1, \\
 \vdots & \\
 \vdots & \\
 c_{r1}x_1 + \ldots + c_{r1}x_n + d_{r1}y_1 + \ldots + d_{r1}y_k & \geq e_r,
 \right.
\end{align*}
\]
Extended formulations: Motivation

Motivation: Describing a polytope with a small number of inequalities.
How: By introducing new variables.
Assume we have a system of inequalities

\[
\begin{align*}
 a_{11}x_1 + \ldots + a_{n1}x_n & \geq b_1, \\
 \vdots \\
 a_{m1}x_1 + \ldots + a_{nm}x_n & \geq b_m.
\end{align*}
\]

We want to construct new inequalities in variables \(x_1, \ldots, x_n, y_1, \ldots, y_k \) such that the above system is equivalent to the following:

\[
\exists y_1 \ldots \exists y_k \quad \begin{align*}
 c_{11}x_1 + \ldots + c_{n1}x_n + d_{11}y_1 + \ldots + d_{1k}y_k & \geq e_1, \\
 \vdots \\
 c_{r1}x_1 + \ldots + c_{r1}x_n + d_{r1}y_1 + \ldots + d_{r1}y_k & \geq e_r,
\end{align*}
\]

Why do we care?
Extended formulations: Motivation

Motivation: Describing a polytope with a small number of inequalities.

How: By introducing new variables.

Assume we have a system of inequalities

\[
\begin{align*}
 a_{11}x_1 + \ldots + a_{n_1}x_n &\geq b_1, \\
 \ldots \\
 a_{m_1}x_1 + \ldots + a_{n_m}x_n &\geq b_m.
\end{align*}
\]

We want to construct new inequalities in variables \(x_1, \ldots, x_n, y_1, \ldots, y_k\) such that the above system is equivalent to the following:

\[
\exists y_1 \ldots \exists y_k \begin{align*}
 c_{11}x_1 + \ldots + c_{n_1}x_n + d_{11}y_1 + \ldots + d_{1k}y_k &\geq e_1, \\
 \ldots \\
 c_{r_1}x_1 + \ldots + c_{r_1}x_n + d_{r_1}y_1 + \ldots + d_{r_1}y_k &\geq e_r,
\end{align*}
\]

Why do we care? Because it is easier to optimize linear functionals on polytopes with small number of facets.
Extended formulations: Definition
Extended formulations: Definition

Let $P \subset \mathbb{R}^n$ be a convex polytope.
Extended formulations: Definition

Let $P \subset \mathbb{R}^n$ be a convex polytope.

The (linear) extended formulation of P is the description of a polytope Q in terms of linear equations and inequalities and a linear projection sending Q to P.
Extended formulations: Definition

Let $P \subset \mathbb{R}^n$ be a convex polytope.

The (linear) extended formulation of P is the description of a polytope Q in terms of linear equations and inequalities and a linear projection sending Q to P.

The number of inequalities used in the extended formulation is its size.
Extended formulations: Definition

Let $P \subset \mathbb{R}^n$ be a convex polytope.

The (linear) extended formulation of P is the description of a polytope Q in terms of linear equations and inequalities and a linear projection sending Q to P.

The number of inequalities used in the extended formulation is its size.

The extension complexity of P is the smallest possible size of any extended formulation of P. We denote it by $xc(P)$.
Extended formulations: Definition

Let $P \subset \mathbb{R}^n$ be a convex polytope.

The **(linear) extended formulation** of P is the description of a polytope Q in terms of linear equations and inequalities and a linear projection sending Q to P.

The number of inequalities used in the extended formulation is its **size**.

The **extension complexity** of P is the smallest possible size of any extended formulation of P. We denote it by $\text{xc}(P)$.

Equivalently, the linear extension complexity of P is the smallest possible number of facets of those polytopes Q which can be projected to P.
Extended formulations: Definition

Let $P \subset \mathbb{R}^n$ be a convex polytope.

The (linear) extended formulation of P is the description of a polytope Q in terms of linear equations and inequalities and a linear projection sending Q to P.

The number of inequalities used in the extended formulation is its size.

The extension complexity of P is the smallest possible size of any extended formulation of P. We denote it by $xc(P)$.

Equivalently, the linear extension complexity of P is the smallest possible number of facets of those polytopes Q which can be projected to P.

$$xc(P) \leq \#\text{facets}(P), \quad xc(P) \leq \#\text{vertices}(P).$$
Extended formulations: Definition

Let \(P \subset \mathbb{R}^n \) be a convex polytope.

The (linear) extended formulation of \(P \) is the description of a polytope \(Q \) in terms of linear equations and inequalities and a linear projection sending \(Q \) to \(P \).

The number of inequalities used in the extended formulation is its size.

The extension complexity of \(P \) is the smallest possible size of any extended formulation of \(P \). We denote it by \(\text{xc}(P) \).

Equivalently, the linear extension complexity of \(P \) is the smallest possible number of facets of those polytopes \(Q \) which can be projected to \(P \).

\[
\text{xc}(P) \leq \#\text{facets}(P), \quad \text{xc}(P) \leq \#\text{vertices}(P).
\]

Example: The polytope \(\{|x_1| + \ldots + |x_n| \leq 1\} \) has \(2^n \) facets but admits an extended formulation of size \(2n \).
The smallest non-trivial example: Hexagon
Example: Hexagon
Example: Hexagon
Example: Hexagon
Example: Hexagon

Gouveia, Parrilo, Thomas (2013):

Almost all hexagons have extension complexity six.
Motivating problem

Every convex n-gon is a projection of a polytope with at most k facets.
Motivating problem

Every convex n-gon is a projection of a polytope with at most k facets.

Denote by $\text{wcc}(n)$ the **worst-case extension complexity** of a convex n-gon. That is, $\text{wcc}(n)$ is the smallest k for which the above statement is true.
Motivating problem

Every convex n-gon is a projection of a polytope with at most k facets. Denote by $wcc(n)$ the **worst-case extension complexity** of a convex n-gon. That is, $wcc(n)$ is the smallest k for which the above statement is true.

Beasley, Laffey (2009): Is $wcc(n) = n$?
Motivating problem

Every convex n-gon is a projection of a polytope with at most k facets. Denote by $\text{wcc}(n)$ the \textit{worst-case extension complexity} of a convex n-gon. That is, $\text{wcc}(n)$ is the smallest k for which the above statement is true.

Beasley, Laffey (2009): Is $\text{wcc}(n) = n$?

Lin, Chu (2010) proved that $\text{wcc}(n) = n$.
Motivating problem

Every convex n-gon is a projection of a polytope with at most k facets.

Denote by $\text{wcc}(n)$ the worst-case extension complexity of a convex n-gon. That is, $\text{wcc}(n)$ is the smallest k for which the above statement is true.

Beasley, Laffey (2009): Is $\text{wcc}(n) = n$?

Lin, Chu (2010) proved that $\text{wcc}(n) = n$.

Gillis, Glineur (2012) computed $\text{wcc}(n)$ for small n; they found a gap in proof by Lin and Chu.
Motivating problem

Every convex n-gon is a projection of a polytope with at most k facets. Denote by $\text{wcc}(n)$ the \textit{worst-case extension complexity of a convex n-gon}. That is, $\text{wcc}(n)$ is the smallest k for which the above statement is true.

Beasley, Laffey (2009): Is $\text{wcc}(n) = n$?

Gillis, Glineur (2012) computed $\text{wcc}(n)$ for small n; they found a gap in proof by Lin and Chu.
Motivating problem

Every convex n-gon is a projection of a polytope with at most k facets. Denote by $wcc(n)$ the worst-case extension complexity of a convex n-gon. That is, $wcc(n)$ is the smallest k for which the above statement is true.

Beasley, Laffey (2009): Is $wcc(n) = n$?

Gillis, Glineur (2012) computed $wcc(n)$ for small n; they found a gap in proof by Lin and Chu.

Fiorini, Rothvoss, Tiwary (2012) proved that $wcc(n) \geq \sqrt{2n}$.
Motivating problem

Every convex \(n \)-gon is a projection of a polytope with at most \(k \) facets.

Denote by \(\text{wcc}(n) \) the worst-case extension complexity of a convex \(n \)-gon. That is, \(\text{wcc}(n) \) is the smallest \(k \) for which the above statement is true.

Beasley, Laffey (2009): Is \(\text{wcc}(n) = n \)?

Gillis, Glineur (2012) computed \(\text{wcc}(n) \) for small \(n \); they found a gap in proof by Lin and Chu.

Fiorini, Rothvoss, Tiwary (2012) proved that \(\text{wcc}(n) \geq \sqrt{2n} \).

Padrol (2015) improves the lower bound \(\text{wcc}(n) \geq \lceil 2\sqrt{2n} - 2 - 1 \rceil \).
Motivating problem

Every convex n-gon is a projection of a polytope with at most k facets. Denote by $wcc(n)$ the worst-case extension complexity of a convex n-gon. That is, $wcc(n)$ is the smallest k for which the above statement is true.

Beasley, Laffey (2009): Is $wcc(n) = n$?

Gillis, Glineur (2012) computed $wcc(n)$ for small n; they found a gap in proof by Lin and Chu.

Fiorini, Rothvoss, Tiwary (2012) proved that $wcc(n) \geq \sqrt{2n}$.

Padrol (2015) improves the lower bound $wcc(n) \geq \lceil 2\sqrt{2n} - 2 - 1 \rceil$.

These lower bounds are achieved on generic (that is, random) polygons. Can we do better? No answer is known, except for very small n.
Asymptotic behavior of $wcc(n)$

Beasley, Laffey (2009): Is $wcc(n) = n$?
Asymptotic behavior of $wcc(n)$

Beasley, Laffey (2009): Is $wcc(n) = n$?

Braun, Pokutta (2013): Is $wcc(n) \in \Omega(n)$?
Asymptotic behavior of $\text{wcc}(n)$

Beasley, Laffey (2009): Is $\text{wcc}(n) = n$?

Braun, Pokutta (2013): Is $\text{wcc}(n) \in \Omega(n)$?

Padrol, Pfeifle (2014): Is $\text{wcc}(n) \in O(\sqrt{n})$?
Asymptotic behavior of $wcc(n)$

Beasley, Laffey (2009): Is $wcc(n) = n$?

Braun, Pokutta (2013): Is $wcc(n) \in \Omega(n)$?

Padrol, Pfeifle (2014): Is $wcc(n) \in O(\sqrt{n})$?

Vandaele, Gillis, Glineur, Tuyttens (2014):
Is $wcc(n)$ somewhere between $O(\sqrt{n})$ and $\Omega(n)$?
Asymptotic behavior of $wcc(n)$

Beasley, Laffey (2009): Is $wcc(n) = n$?

Braun, Pokutta (2013): Is $wcc(n) \in \Omega(n)$?

Padrol, Pfeifle (2014): Is $wcc(n) \in O(\sqrt{n})$?

Vandaele, Gillis, Glineur, Tuyttens (2014):
Is $wcc(n)$ somewhere between $O(\sqrt{n})$ and $\Omega(n)$?

Partial solution:

Shitov (2014): $wcc(n) < 6n/7 + 1$ and $wcc(n) \in o(n)$.
Asymptotic behavior of $\text{wcc}(n)$

Beasley, Laffey (2009): Is $\text{wcc}(n) = n$?

Braun, Pokutta (2013): Is $\text{wcc}(n) \in \Omega(n)$?

Padrol, Pfeifle (2014): Is $\text{wcc}(n) \in O(\sqrt{n})$?

Vandaele, Gillis, Glineur, Tuyttens (2014): Is $\text{wcc}(n)$ somewhere between $O(\sqrt{n})$ and $\Omega(n)$?

Partial solution:

Shitov (2014): $\text{wcc}(n) < \frac{6n}{7} + 1$ and $\text{wcc}(n) \in o(n)$.

Actually, the latter formula stands for
Asymptotic behavior of $\text{wcc}(n)$

Beasley, Laffey (2009): Is $\text{wcc}(n) = n$?

Braun, Pokutta (2013): Is $\text{wcc}(n) \in \Omega(n)$?

Padrol, Pfeifle (2014): Is $\text{wcc}(n) \in O(\sqrt{n})$?

Vandaele, Gillis, Glineur, Tuyttens (2014):
Is $\text{wcc}(n)$ somewhere between $O(\sqrt{n})$ and $\Omega(n)$?

Partial solution:

Shitov (2014): $\text{wcc}(n) < 6n/7 + 1$ and $\text{wcc}(n) \in o(n)$.

Actually, the latter formula stands for

$$
\text{wcc}(n) \leq \frac{25n}{\sqrt{\ln \ln \ln \ln \ln \ln n}}.
$$
Yannakakis’ theory
Yannakakis’ theory

Let A be a nonnegative matrix.
Yannakakis’ theory

Let A be a nonnegative matrix.

The nonnegative rank of A is the smallest possible k such that the equality $A = BC$ holds for m-by-k nonnegative matrix B and k-by-n nonnegative matrix C.
Yannakakis’ theory

Let A be a nonnegative matrix.

The nonnegative rank of A is the smallest possible k such that the equality $A = BC$ holds for m-by-k nonnegative matrix B and k-by-n nonnegative matrix C.

Various applications of nonnegative factorizations: statistics, data mining, demography, quantum mechanics etc.
Yannakakis’ theory

Let A be a nonnegative matrix.

The nonnegative rank of A is the smallest possible k such that the equality $A = BC$ holds for m-by-k nonnegative matrix B and k-by-n nonnegative matrix C.

Various applications of nonnegative factorizations: statistics, data mining, demography, quantum mechanics etc.

Assume a polytope P has vertices v_1, \ldots, v_n and facets f_1, \ldots, f_m.
Yannakakis’ theory

Let A be a nonnegative matrix.

The **nonnegative rank** of A is the smallest possible k such that the equality $A = BC$ holds for m-by-k nonnegative matrix B and k-by-n nonnegative matrix C.

Various applications of nonnegative factorizations: statistics, data mining, demography, quantum mechanics etc.

Assume a polytope P has vertices v_1, \ldots, v_n and facets f_1, \ldots, f_m.

The slack matrix of P is the m-by-n matrix whose (i,j)-th entry equals the distance from f_i to v_j.
Yannakakis’ theory

Let A be a nonnegative matrix.

The **nonnegative rank** of A is the smallest possible k such that the equality $A = BC$ holds for m-by-k nonnegative matrix B and k-by-n nonnegative matrix C.

Various applications of nonnegative factorizations: statistics, data mining, demography, quantum mechanics etc.

Assume a polytope P has vertices v_1, \ldots, v_n and facets f_1, \ldots, f_m.

The slack matrix of P is the m-by-n matrix whose (i,j)-th entry equals the distance from f_i to v_j.

Theorem (Yannakakis, 1991). The extension complexity of a polytope equals the nonnegative rank of its slack matrix.
Yannakakis’ theory

Let A be a nonnegative matrix.

The nonnegative rank of A is the smallest possible k such that the equality $A = BC$ holds for m-by-k nonnegative matrix B and k-by-n nonnegative matrix C.

Various applications of nonnegative factorizations: statistics, data mining, demography, quantum mechanics etc.

Assume a polytope P has vertices v_1, \ldots, v_n and facets f_1, \ldots, f_m.

The slack matrix of P is the m-by-n matrix whose (i,j)-th entry equals the distance from f_i to v_j.

Theorem (Yannakakis, 1991). The extension complexity of a polytope equals the nonnegative rank of its slack matrix.

Shitov (2014): Yannakakis’ result holds over any real closed field.
Field of generalized Puiseux series
Field of generalized Puiseux series

Denote by $\mathbb{R}\{\{t\}\}$ the set of all formal sums

$$a = \sum_{e \in E} a_et^e,$$

where a_e are nonzero real numbers and $E \subset \mathbb{R}$ is a well-ordered subset.
Field of generalized Puiseux series

Denote by $\mathbb{R}\{\{t\}\}$ the set of all formal sums

$$a = \sum_{e \in E} a_e t^e,$$

where a_e are nonzero real numbers and $E \subset \mathbb{R}$ is a well-ordered subset.

A series a is called positive if the leading coefficient is positive. Denote the set of positive series by \mathcal{R}_+. The degree mapping $a \to \min E$ is a homomorphism from \mathcal{R}_+ to the tropical semiring.
Denote by $\mathbb{R}\{\{t\}\}$ the set of all formal sums

$$a = \sum_{e \in E} a_e t^e,$$

where a_e are nonzero real numbers and $E \subset \mathbb{R}$ is a well-ordered subset.

A series a is called positive if the leading coefficient is positive. Denote the set of positive series by \mathcal{R}_+. The degree mapping $a \rightarrow \min E$ is a homomorphism from \mathcal{R}_+ to the tropical semiring.

$\mathbb{R}\{\{t\}\}$ is real closed (Poonen, 1993).
Field of generalized Puiseux series

Denote by $\mathbb{R}\{\{t\}\}$ the set of all formal sums

$$a = \sum_{e \in E} a_et^e,$$

where a_e are nonzero real numbers and $E \subset \mathbb{R}$ is a well-ordered subset.

A series a is called positive if the leading coefficient is positive. Denote the set of positive series by \mathcal{R}_+. The degree mapping $a \rightarrow \min E$ is a homomorphism from \mathcal{R}_+ to the tropical semiring.

$\mathbb{R}\{\{t\}\}$ is real closed (Poonen, 1993).

Shitov (2014): Let \mathbb{R} be a real closed field and $P \subset \mathbb{R}^n$ a convex polytope. Then, there is a real polytope with the same extension complexity and combinatorial structure as those of P.
Tropical lower bounds
Tropical lower bounds

Let T be a tropical matrix. The Barvinok rank of T is the smallest possible k such that the equality $T = U \circ V$ holds for m-by-k tropical matrix B and k-by-n tropical matrix C.
Tropical lower bounds

Let T be a tropical matrix. The Barvinok rank of T is the smallest possible k such that the equality $T = U \odot V$ holds for m-by-k tropical matrix B and k-by-n tropical matrix C.

Shitov (2014): The extension complexity of a polytope P over \mathcal{R} is greater than or equal to the Barvinok rank of the tropicalization of the slack matrix of P.
Tropical lower bounds

Let T be a tropical matrix. The Barvinok rank of T is the smallest possible k such that the equality $T = U \odot V$ holds for m-by-k tropical matrix B and k-by-n tropical matrix C.

Shitov (2014): The extension complexity of a polytope P over \mathcal{R} is greater than or equal to the Barvinok rank of the tropicalization of the slack matrix of P.

This theorem can be thought of as a generalization of the Boolean rank bound for the extension complexity. Let’s see how it works...
Example: Another hexagon
Example: Another hexagon
Example: Another hexagon
Example: Another hexagon

The tropicalized slack matrix equals

\[
\begin{pmatrix}
\infty & \infty & a & 0 & 0 & c \\
0 & \infty & \infty & 0 & 0 & 0 \\
0 & a & \infty & \infty & b & 0 \\
0 & 0 & 0 & \infty & \infty & 0 \\
c & 0 & 0 & b & \infty & \infty \\
\infty & 0 & 0 & 0 & 0 & \infty
\end{pmatrix}
\]
The tropicalized slack matrix equals

\[
\begin{pmatrix}
\infty & \infty & a & 0 & 0 & c \\
0 & \infty & \infty & 0 & 0 & 0 \\
0 & a & \infty & \infty & b & 0 \\
0 & 0 & 0 & \infty & \infty & 0 \\
c & 0 & 0 & b & \infty & \infty \\
\infty & 0 & 0 & 0 & 0 & \infty
\end{pmatrix},
\]

whose Barvinok rank is 6. Therefore, this hexagon has extension complexity 6.
New result
New result

Vandaele, Gillis, Glineur, Tuyttens (2014) undertake a computational experiment.
Vandaele, Gillis, Glineur, Tuyttens (2014) undertake a computational experiment. They propose a conjecture consistent with their data:

Is $wcc(n) \leq \left\lfloor \frac{n + 6}{2} \right\rfloor$?
New result

Vandaele, Gillis, Glineur, Tuyttens (2014) undertake a computational experiment. They propose a conjecture consistent with their data:

Is $\text{wcc}(n) \leq [(n + 6)/2]$?

They ask: Do generic convex n-gons have the same extension complexity?
Vandaele, Gillis, Glineur, Tuyttens (2014) undertake a computational experiment. They propose a conjecture consistent with their data:

Is $\text{wcc}(n) \leq [(n + 6)/2]$?

They ask: Do generic convex n-gons have the same extension complexity?

A conjecture by Padrol (2015): Is $\text{wcc}(n) = \lceil 2\sqrt{2n} - 2 - 1 \rceil$?
Vandaele, Gillis, Glineur, Tuyttens (2014) undertake a computational experiment. They propose a conjecture consistent with their data:

Is \(\text{wcc}(n) \leq [(n + 6)/2] \)?

They ask: Do generic convex \(n \)-gons have the same extension complexity?

A conjecture by Padrol (2015): Is \(\text{wcc}(n) = \lceil 2\sqrt{2n} - 2 - 1 \rceil \)?

Matrices with many small entries may cause numerical issues, and for this reason only polygons close to regular were studied during the experiment.
New result

Vandaele, Gillis, Glineur, Tuyttens (2014) undertake a computational experiment. They propose a conjecture consistent with their data:

Is \(wcc(n) \leq [(n + 6)/2] \)?

They ask: Do generic convex \(n \)-gons have the same extension complexity?

A conjecture by Padrol (2015): Is \(wcc(n) = \lceil 2\sqrt{2n - 2} - 1 \rceil \)?

Matrices with many small entries may cause numerical issues, and for this reason only polygons close to regular were studied during the experiment.

In contrast to a computer program, the tropical techniques allow us to study polytopes with some infinitesimally small parameters. There may exist tropical counterexamples to above conjectures...
New result

Vandaele, Gillis, Glineur, Tuyttens (2014) undertake a computational experiment. They propose a conjecture consistent with their data:

Is $wcc(n) \leq [(n + 6)/2]$?

They ask: Do generic convex n-gons have the same extension complexity?

A conjecture by Padrol (2015): Is $wcc(n) = \lceil 2\sqrt{2n - 2} - 1 \rceil$?

Matrices with many small entries may cause numerical issues, and for this reason only polygons close to regular were studied during the experiment.

In contrast to a computer program, the tropical techniques allow us to study polytopes with some infinitesimally small parameters. There may exist tropical counterexamples to above conjectures...

Indeed, they exist. The answer is everywhere no: $wcc(9) = 8$.
An enneagon E such that $xc(E') = 8$
An enneagon E such that $xc(E) = 8$
An enneagon E such that $xc(E') = 8$
Thank you!